Search
18
Jun, 2018
Monday

WELDING HISTORY GOES BACK FARTHER THAN YOU THINK

The process of welding as we know it today uses a wide variety of sophisticated methods, tools, and energy sources. However, what we’re capable of today is the result of a long history of scientific discovery and innovation. In fact, there’s a good chance that it’s a lot longer than you imagined.

Let’s take a look at the use of welding throughout history and how the trade has evolved and continues to evolve.

Prehistory

Welding’s humble beginnings can be traced as far back as the Bronze Age. Softer metals like copper and bronze could be joined using rudimentary tools. Some of the oldest artifacts known to man were constructed using welding, including small circular boxes with pressure-welded lap joints that date sometime between 3000-2000 B.C.

Iron tools and weapons from ancient cultures like the Egyptians have been dated back around 1000 B.C. The furnaces and hammers used to create these artifacts actually set the stage for blacksmithing.


Middle Ages

Throughout the Middle Ages, blacksmiths started to master the process of forge welding. They would first heat the iron in a charcoal furnace and hammer out any imperfections. Then, increasing the heat, they would hammer overlapping metal ends until they bonded. Common items made by those blacksmiths included weapons, armor, chains, and ornaments.


1836

English chemist Edmund Davy discovered the chemical compound acetylene in 1836. While acetylene wasn’t used in welding at this time, Davy’s discovery made oxy-fuel welding and cutting a possibility years later.


1881

Edmund’s cousin, Sir Humphry Davy, discovered electric arcs at the beginning of the 19th century. Auguste De Meritens, a French electrical engineer, used that discovery to create lead plates for batteries. Within the same year, both De Meritens and his student Nikolai Bernardos patented the process for carbon arc welding.

1890

As the 20th century neared, the implementation of metal electrodes improved arc welding. Russian inventor N.G. Slavyanov is credited with the idea of transferring melted metal through an arc. But it was Charles L. Coffin, an American, who patented the process we know today as shielded metal arc welding, or SMAW.


Early 20th Century and World War I

At the turn of the century, a torch suitable for using acetylene was developed, vastly improving gas welding and cutting processes. At the same time, the concept of the coated metal electrode was being developed in both Great Britain and Sweden.

These electrodes consisted of iron wire dipped in mixtures of carbonates and silicates and then left to dry to create the coating. Additionally, this time saw the development of resistance welding.

Part of the reason why the beginning of the 20th century saw so many improvements in welding practices was the demand created by World War I. Many companies began producing commercial welding machines and electrodes to improve the reliability of American weapons, ships, planes, and tanks.

Once the war ended, the American Welding Society, a nonprofit organization, was created to continue improving welding processes in America.


Man welding metal

The 1920s

Several notable advancements were made during the 1920s. For instance, the General Electric Company introduced automatic welding, which allowed for a continuous feed of bare electrode. Electrodes themselves were improved as well.

In an effort to diminish porous and brittle welds, techniques using different gases were developed. Alexander Langmuir used hydrogen as a welding atmosphere, whereas H.M. Hobart and P.K. Devers used argon and helium.


The 1930s

Throughout the 1930s, welding grew more popular at construction sites and shipyards. This is largely due to the development of stud welding.

Similarly, submerged arc welding, which uses an electrode with a thick, granulated layer of flux made from calcium, magnesium, silicon and other compounds, become popular for a number of reasons:

  • Quicker
  • More cost-effective
  • Doesn’t spatter the weld

It’s popular today for those same reasons.


The 1940s

Although Charles Coffin, H.M. Hobart, and P.K. Devers all contributed to the development of gas tungsten arc welding (or GTAW), it was Russell Meredith who perfected the process in 1941 by using a tungsten electrode arc and helium as a shielding gas.

Years later, in 1948, the tungsten electrode was replaced with a continuously fed electrode wire. This innovation was developed at the Battelle Memorial Institute in Columbus, Ohio, and is referred to as gas shielded metal arc welding, or GMAW.

Like submerged arc welding, GMAW became popular because it was much more cost-effective than GTAW.


The 1950s

Lyubavskii and Novoshilov made steel welding even more economical by using carbon dioxide as the shielding gas.

Five years later, in 1958, the size of the arc used in the GTAW process was diminished so welders could accomplish more refined work. Just a year later, an electrode that didn’t require external gas shielding, called the inside-outside electrode, was created.

 

The 1950s was a decade full of welding innovation. Other novel processes included:

  • Electron beam welding process: As its name implies, this method uses a focused beam of electrons as a heat source. It is popular in the American automotive and aircraft engine industries.
  • Friction welding: Developed in the Soviet Union, the process generates heat using rotational speed and upset pressure.
  • Electroslag welding process: This method uses a consumable guide tube and allows for the welding of thick materials in a vertical position.

The 1960s

Similar to the decade previous, the 1960s witnessed a variety of innovations. Notables include:

  • Spray-type arc transfer: This method produces a vaporized spray of the electrode metal that makes for a high-quality finish.
  • Electrogas: A method for vertical welding similar to electroslag, only it uses a flux-cored electrode wire and a gas shield supplied externally.
  • Laser Welding: The powerful heat source gives this process advantages like higher speeds, strong weld joints, and a diminished likelihood of cracking. It’s used in robotic automotive and industrial manufacturing.

Man walking in locker room hallway

Future Trends

Progress never stops, which means that there’s a good chance the process of welding will continue its dynamic history well into the future.

There is a trend where engineers are seeking to produce welding materials that require less energy in order to make them more environmentally friendly.

Some are speculating that welded materials will be able to indicate where they are in their lifecycle by means of computer chips.

Is Your Future in Welding

Built in conjunction with Lincoln Electric, the 36-week Welding Technology program at Universal Technical Institute prepares graduates for the industry in less than one year. If you're interested in learning more, just click here.